If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+5x+4+6x^2+2x+39=180
We move all terms to the left:
7x^2+5x+4+6x^2+2x+39-(180)=0
We add all the numbers together, and all the variables
13x^2+7x-137=0
a = 13; b = 7; c = -137;
Δ = b2-4ac
Δ = 72-4·13·(-137)
Δ = 7173
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7173}=\sqrt{9*797}=\sqrt{9}*\sqrt{797}=3\sqrt{797}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-3\sqrt{797}}{2*13}=\frac{-7-3\sqrt{797}}{26} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+3\sqrt{797}}{2*13}=\frac{-7+3\sqrt{797}}{26} $
| 1,9x+3=1,3x. | | 60y+2750-50y=1.5×80y | | 60x+2750-50x=1.5×80x | | 30x+136=180 | | 30x+136=0 | | 60=y/0.5 | | 4(a+1)+2(a-1)=23 | | 16x+61+10x+51+4x+24=180 | | (4y+5)°=(3y+63)° | | y/4=3.05 | | x^2-7x+72+10x+46+3x+7=180 | | m2+8m−43=0 | | 11x=11.5 | | 20=0.2h | | -5/6x-1/8x=102 | | 2(x-8)-4x=10x+4 | | 4c=216 | | x(1+0.05)=252 | | 2.5x+24=-7 | | 2x2–9=-6 | | 10^u=100,000 | | 2x+5=52° | | 47-4c=39 | | 3b+1+4b=3b | | 3a+5=20-2a | | 8y+-10=-18 | | 11=3k+-4 | | (5x-27)°+(8x-13)°=90° | | -4x^2-8x+9=0 | | -74.7y-16.2=-281.136-4.98y | | 12x+2(x+10)=60 | | x/(100-x)=0.4 |